時間:2023-08-20 14:46:44
導言:作為寫作愛好者,不可錯過為您精心挑選的10篇歐姆定律適用條件,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。
2.相同之處
歐姆定律適用于線性元件,如金屬等,不適用于非線性元件,如氣態導體等。
三、三點質疑
1.線性元件存在嗎
材料的電阻率ρ會隨其他因素的變化而變化(如溫度),從而導致導體的電阻實際上不可能是穩定不變的,也就是說理想的線性元件并不存在。在實際問題中,當通電導體的電阻隨工作條件變化很小時,可以近似看作線性元件,但這也是在電壓變化范圍較小的情況下才成立,例如常用的炭膜定值電阻,其額定電流一般較小,功率變化范圍較小。
2.對所有非線性元件歐姆定律都不適合嗎
在上述所有表述中都有歐姆定律適用于金屬導體之說,又有歐姆定律適用的元件是線性元件之說,也就是說金屬是線性材料,而我們知道,白熾燈泡的燈絲是金屬材料鎢制成的,也就是說線性材料鎢制成的燈絲應是線性元件,但實踐告訴我們燈絲顯然不是線性元件,因此這里的表述就不正確,為了避免這種自相矛盾,許多資料上又說歐姆定律的應用有“同時性”,或者說“歐姆定律不適用于非線性元件,但對于各狀態下是適合的”,筆者總覺得這樣的解釋難以讓學生接受,有牽強之意,給教師的教造成難度,既然各個狀態下都是適合的,那就是整個過程適合呀。
3.對歐姆定律適合的元件I與R一定成反比嗎
I與R成反比必須有“導體兩端的電壓U相同”這一前提,在這一前提條件下改變導體的電阻R,那么通過導體的電流就會發生變化,因而導體的工作點就發生了變化,其制作材料的電阻率 ρ就隨之變化,因此導致電阻又會發生進一步的變化,這樣又會導致電流產生進一步的變化,所以實踐中多數情況下I與R就不會成嚴格的反比關系,甚至相差很大。
四、兩條教學對策
1.歐姆定律的表述需要改進
其實早就有一些老師對歐姆定律的表述進行過深入的分析,并結合他們自身長期的教學經驗,已經提出了歐姆定律的表述的后半部分“I與R成反比”是多余的,應該刪除,筆者也贊成這種做法,因為這種說法本身就是不準確的,這也是在上述三種大學普通物理教材中都沒有出現這個說法的原因。
通過對歐姆定律發現歷程的溯源,可知歐姆當時發現這一電路定律時也沒有提出“反比”這一函數關系,只是定量地給出了一個等式,因此,筆者認為歐姆定律的現代表述有必要改進,既要傳承歐姆當時的公式,也要符合實際情況,所以筆者認為歐姆定律應該表述為:通過導體的電流強度等于導體兩端的電壓與導體此時的電阻之比。
那么,為什么連“I與U成正比”也省去呢?當R一定時,I與U成正比是顯然的,但如果在歐姆定律的表述中一旦出現“I與U成正比”的說法,學生就會很自然地想到“I與R成反比”,而這種說法是不對的,所以表述中最好不要出現“I與U成正比”和“I與R成反比”這兩種說法。
2.線性還是非線性元件的區分不能以材料種類為判斷標準
二、牛頓第二定律。在第一定律的基礎上,從物體在外力作用下,它的加速度跟外力與本身的質量存在什么關系引入課題。然后用控制變量的實驗方法歸納出物體在單個力作用下的牛頓第二定律。再用推理分析法把結論推廣為一般的表達:物體的加速度跟所受外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。教學時還應注意公式F=Kma中,比例系數K不是在任何情況下都等于1;a隨F改變存在著瞬時關系;牛頓第二定律與第一定律、第三定律的關系,以及與運動學、動量、功和能等知識的聯系。教師應明確牛頓定律的適用范圍。
三、萬有引力定律。教學時應注意:①要充分利用牛頓總結萬有引力定律的過程,卡文迪許測定萬有引力常量的實驗,海王星、冥王星的發現等物理學史料,對學生進行科學方法的教育。②要強調萬有引力跟質點間的距離的平方成反比(平方反比定律),減少學生在解題中漏平方的錯誤。③明確是萬有引力基本的、簡單的表式,只適用于計算質點的萬有引力。萬有引力定律是自然界最普遍的定律之一。但在天文研究上,也發現了它的局限性。
四、機械能守恒定律。這個定律一般不用實驗總結出來,因為實驗誤差太大。實驗可作為驗證。一般是根據功能原理,在外力和非保守內力都不做功或所做的總功為零的條件下推導出來。高中教材是用實例總結出來再加以推廣。若不同形式的機械能之間不發生相互轉化,就沒有守恒問題。機械能守恒定律表式中各項都是狀態量,用它來解決問題時,就可以不涉及狀態變化的復雜過程(過程量被消去),使問題大大地簡化。要特別注意定律的適用條件(只有系統內部的重力和彈力做功)。這個定律不適用的問題,可以利用動能定理或功能原理解決。
五、動量守恒定律。歷史上,牛頓第二定律是以F=dP/dt的形式提出來的。所以有人認為動量守恒定律不能從牛頓運動定律推導出來,主張從實驗直接總結。但是實驗要用到氣墊導軌和閃光照相,就目前中學的實驗條件來說,多數難以做到。即使做得到,要在課堂里準確完成實驗并總結出規律也非易事。故一般教材還是從牛頓運動定律導出,再安排一節“動量和牛頓運動定律”。這樣既符合教學規律,也不違反科學規律。中學階段有關動量的問題,相互作用的物體的所有動量都在一條直線上,所以可以用代數式替代矢量式。學生在解題時最容易發生符號的錯誤,應該使他們明確,在同一個式子中必須規定統一的正方向。動量守恒定律反映的是物體相互作用過程的狀態變化,表式中各項是過程始、末的動量。用它來解決問題可以使問題大大地簡化。若物體不發生相互作用,就沒有守恒問題。在解決實際問題時,如果質點系內部的相互作用力遠比它們所受的外力大,就可略去外力的作用而用動量守恒定律來處理。動量守恒定律是自然界最重要、最普遍的規律之一。無論是宏觀系統或微觀粒子的相互作用,系統中有多少物體在相互作用,相互作用的形式如何,只要系統不受外力的作用(或某一方向上不受外力的作用),動量守恒定律都是適用的。
歐姆定律是高中物理電學部分的核心內容,也是高考的重難點內容,同時歐姆定律掌握的好壞會直接影響我們的考試成績,因此要多用時間將這塊知識進行鞏固,以取得更高的分數。
1在歐姆定律的學習中常遇到的問題
1.1歐姆定律的使用范圍問題
在電路的實驗過程中,我會出現忽略導線,電子元件與電源自身的電阻,將整個電路視為純電阻電路的問題。而歐姆定律通常只適用于導電金屬和導電液體,對于氣體、半導體、超導體等特殊電路元器件不適用,但我們知道,白熾燈泡的燈絲是金屬材料鎢制成的,也就是說線性材料鎢制成的燈絲應是線性元件,但實踐告訴我們燈絲顯然不是線性元件,因此這里的表述就不正確,本人為了弄清這里的問題,向老師進行了請教并查閱了相關資料,許多資料上說歐姆定律的應用有“同時性”與“歐姆定律不適用于非線性元件,但對于各狀態下是適合的”。但我自身總覺得這樣的解釋難以接受,有牽強之意,即個人理解為既然各個狀態下都是適合的,那就是適合整個過程。
1.2線性元件的存在問題
通過物理學習我們會發現材料的電阻率ρ會隨其它因素的變化而變化(如溫度),從而導致導體的電阻實際上不可能是穩定不變的,也就是說理想的線性元件并不存在。而在實際問題中,當通電導體的電阻隨工作條件變化很小時,可以近似看作線性元件,但這也是在電壓變化范圍較小的情況下才成立,例如常用的炭膜定值電阻,其額定電流一般較小,功率變化范圍較小。
1.3電流,電壓與電阻使用的問題
電流、電壓、電阻的概念及單位,電流表、電壓表、滑動變阻器的使用,是最基礎的概念,也是我最容易混淆的內容。電流表測量電流、電壓表測量電壓、變阻器調節電路中的電流,而電流、電壓、電阻的概念是基本的電學測量儀器,另外,歐姆定律只是用來研究電路內部系統,不包括電源內部的電阻、電流等,在學習歐姆定律的過程中,電流表、電壓表、導線等電子元器件的影響常常是不考慮在內的,而對于歐姆定律的公式I=UR,I、U、R這三個物理量,則要求必須是在同一電路系統中,且是同一時刻的數值。
2歐姆定律學習中需要掌握的內容
本人在基于電學的基礎之上,通過對歐姆定律的解題方式進行分析,個人認為我們需掌握以下內容:了解產生電流的條件;理解電流的概念和定義式I=q/t,并能進行相關的計算;熟練掌握歐姆定律的表達式I=U/R,明確歐姆定律的適用條件范圍,并能用歐姆定律解決相關的電路問題;知道什么是導體的伏安特性,什么是線性元件與非線性元件;知道電阻的定義和定義式R=U/I;能綜合運用歐姆定律分析、計算實際問題;需要進行實驗、設計實驗,能根據實驗分析、計算、統計物理規律,并能運用公式法和圖像法相結合的方法解決問題。
3歐姆定律的解題思路及技巧
3.1加深對歐姆定律內容的理解
在歐姆定律例題分析中,我們比較常見的問題是多個變量的問題,以我自身為例,由于物理理解水平有限,且電壓、電流、電阻的概念比較抽象,所以學習難度較大,但我通過相關教學短片的學習,將電阻比喻成“阻礙電流通行的路障,電阻越大路越不好走,電阻越小通過速度則快”的方式,明白了電阻是導體自身的特有屬性,其大小是受溫度、導體的材料、長度等各方面因素影響的,與其兩端的電壓跟電流的大小無關,并且明白了電阻不會隨著電流或者電壓的大小改變而改變。同時我們每一個人都知道對于不同的習題,解決步驟都是不相同的,雖同一問題會有不同的解題方法,但總是離不開歐姆定律這個框架。因此對于一些與電學有關的知識,我一般會利用歐姆定律解決電生磁現象與電功率計算問題。例如:某人做驗時把兩盞電燈串聯起來,燈絲電阻分別為R1=30Ω,R2=24Ω,電流表的讀數為0.2A,那么加在R1和R2兩端的電壓各是多少?我可以根據兩燈串聯這一關建條件,與U=IR得出:U1=IR1=0.2A×30Ω=6V,U2=IR2=0.2A×24Ω=4.8V,故R1和R2兩端電壓分別為6V、4.8V的結論。
3.2利用電路圖進行進行計算
在解有關歐姆定律的題時,以前直接把不同導體上的電流、電壓和電阻代入表達式I=U/R及導出式U=IR和R=U/I進行計算,并把同一導體不同時刻、不同情況下的電流、電壓和電阻都代入歐姆定律的表達式及導出式進行計算,因此經常混淆,不便于分析問題。通過后期老師給予我的建議,在解題前我都會先根據題意畫出電路圖,并在圖上標明已知量、數值和未知量的符號,明確需分析的是哪一部分電路,這部分電路的連接方式是串聯還是并聯,以抓住電流、電壓、電阻在串聯、并聯電路中的特征進行解題。同時,我還會注意開關通斷引起電路結構的變化情況,并且回給“同一段電路”同一時刻的I、U、R加上同一種腳標,其中需注意單位的統一與電流表、電壓表在電路中的連接情況,以及滑動變阻器滑片移動時電流、電壓、電阻的變化情況。
3.3利用電阻進行知識拓展
本著從易到難的原則,我們可從一個電阻的問題進行計算,再擴展到兩個電阻、三個電阻,逐漸拓寬我們的思路,讓自己找到學習的目標以及方法。比如遇到當定值電阻接在電源兩端后電壓由U1變為U2,電路中的電流由I1增大到I2,這個定值電阻是多少的問題時,我們可利用歐姆定律的概念ΔU=ΔI?R得到電阻的值,而當難度增加由一個電阻變為兩個電阻時,定值電阻與滑動變阻器串聯在電壓恒定的電源兩端,電壓表V1的變化量為ΔU1,電壓表V2的變化量為ΔU2,電流表的示數為ΔI,在這樣的問題上可將變化的問題轉化為固定的關系之間的數值,就可簡化許多變量問題的計算。當變量變為三個電阻時難度會進一步的增大,我起初認為這是一項不可能完成的任務,所以放棄了這類題,而在經過詢問成績優秀的同學時,才知道可將三個電阻盡量化為兩個電阻,通過電壓表與電流表的位置將電阻進行合并,以此簡化題目。
4總結
簡言之,歐姆定律是物理教材中最為重要的電學定律之一,是電學內容的重要知識,也是我們學習電磁學最基礎的知識。當然,對于歐姆定律的學習與解題方法,自然不止以上所述方法,因而在具體的學習中,我們要立足于自身實際學習情況來進行方法的選取,突破重難點知識,以找到更好的解題思路。
參考文獻:
歐姆定律探究電流與電壓、電阻的關系歐姆定律內容、公式歐姆定律的應用伏安法測電阻串聯、并聯電路電阻的特點
二、知識梳理
(一)歐姆定律的探究(探究電流與電壓、電阻的關系)
1.探究方法:控制變量.
2.實驗電路圖:如圖1所示.
3.實驗結論:在電阻一定時,導體中的電流與導體兩端的電壓成正比;在電壓一定時,導體中的電流與導體的電阻成反比.
(二)歐姆定律
1.內容:導體中的電流跟導體兩端的電壓成正比,跟導體的電阻成反比.
2.表達式:I=■
3.適用范圍:歐姆定律所研究的電路是電源外部的一部分或全部電路;在非純電阻電路中(如含有電動機的電路),公式中的U、I、R的關系不成立.
4.適用條件:歐姆定律公式中的各個物理量具有同一性,即I、U、R是對同一段電路(或導體)、同一時刻(或狀態)而言的.
5.公式變形:由歐姆定律數學表達式可得到公式R=■、U=IR,用于計算導體的電阻和導體兩端的電壓.
(三)歐姆定律的應用
1.伏安法測電阻
伏安法測電阻的實驗原理是R=■.用伏安法測量導體電阻的大小,即用電壓表測量導體兩端的電壓大小,用電流表測量導體中電流大小,根據公式R=■,即可得到導體電阻的大小.在用伏安法測電阻時,要正確選擇電壓表與電流表的量程,同時,要利用多次測量求平均值以減小實驗誤差.
2.推導串聯電路的總電阻
如圖2,根據串聯電路中電流、電壓的特點可知:
I=I1=I2,U串=U1+U2
再根據歐姆定律變形公式可得:
IR串=I1R1+I2R2
所以,R串=R1+R2
結論:串聯電路的總電阻等于各串聯導體電阻之和.(若有n個導體串聯,其總電阻為R串=R1+R2……+Rn)
3.推導并聯電路的總電阻
如圖3,根據并聯電路中電流、電壓的特點可知:
I=I1+I2,U=U1=U2
再根據歐姆定律的變形公式可得:
■=■+■
所以,■=■+■
結論:并聯電路總電阻的倒數等于各并聯導體電阻倒數之和.(若有n個導體并聯,其總電阻為■=■+■+……+■)
三、典型例題
例1 由歐姆定律數學表達式可以得出公式R=■.關于此表達式,下列說法正確的是( ).
A.當導體兩端的電壓是原來的2倍時,導體的電阻也是原來的2倍
B.當導體中電流是原來的2倍時,導體的電阻是原來的0.5倍
C.當導體兩端的電壓增加幾倍,導體中的電流也增加幾倍,導體的電阻不變
D.當導體兩端的電壓為零時,導體的電阻也為零
解析 公式R=■是由歐姆定律數學表達式變形得到的,它表示一段導體兩端的電壓與通過導體電流的比值是不變的,它反映了導體對電流的阻礙作用.電阻是導體本身的一種屬性,跟導體兩端電壓、電流均無關.
答案 C.
例2 小明同學想探究“一段電路中的電流跟電阻的關系”,設計了如圖4所示的電路圖(電源電壓恒為6V).
(1)根據小明設計的圖4,用鉛筆將圖5的實物連接完整.
(2)小明將第一次實驗得到的數據填入了下面表格中,然后將E、F兩點間的電阻由10Ω更換為20Ω,讓滑動變阻器的滑片P向 移動(選填“A”或“B”),直到電壓表的示數為 V.此時電流表的指針位置如圖6所示,請把測得的電流數值填入表格.
(3)小明根據實驗數據得到如下結論:導體中的電流與導體的電阻成反比.請你對以上的探究過程和得出的結論做出評價,并寫出兩點評價意見: ; .
解析 (1)連接實物圖時,電壓表要并聯在定值電阻兩端,并注意選擇合適的量程;連接滑動變阻器要注意連接“一上一下”兩個連接柱.
(2)因為導體中的電流與導體電阻和導體兩端的電壓均有關,所以探究“一段電路中的電流跟電阻關系”時應控制定值電阻兩端電壓相同.當E、F兩點間的電阻由10Ω更換為20Ω時,如果滑動變阻器滑片P不移動,則電壓表示數會變大,為了保持電壓表示數不變,滑片P應向B端移動,直到電壓表示數與第一次實驗時一樣,即4V.
(3)通過數據分析找出物理規律是研究物理問題的常用方法,但僅通過一兩次實驗數據就得到結論并不科學,常常會使結果帶有偶然性,因此需要進行多次實驗;得出的結論是有條件限制的,結論缺少前提條件.
答案 (1)如圖7所示.
(2)B 電壓表的示數為4V 0.2
(3)實驗次數太少(沒有進行多次實驗);結論缺少“電壓一定”的前提條件
例3 小華想測出一個電阻Rx的電阻值,將選用的器材連接成如圖8所示的電路,R0為已知阻值的定值電阻.由于電源電壓未知,所以,沒能測出電阻Rx的阻值.請你選添合適的器材,幫他完成這個實驗.要求:(1)用兩種不同的方法,分別畫出電路圖,簡要說明實驗方法,并寫出電阻Rx的表達式.(2)每一種方法在不拆除原有電路接線的條件下,只允許選添一種器材和導線接入電路.
解析 方法1:如圖9,用電流表測出通過Rx的電流I,用電壓表測出Rx兩端的電壓U,則電阻Rx=■.
方法2:如圖10,用電流表測出通過Rx的電流為I,用電壓表測出Rx和R0兩端的總電壓為U,則電阻Rx=■-R0.
方法3:如圖11,先用電流表測出電路中的電流為I1,再將導線并聯在電阻Rx兩端,測出電流表為I2,則電阻Rx=■R0 .
點評 本題采用特殊方法測量電阻.因為已有電流表,這樣就可以測出電阻Rx和已知電阻R0的電流值.但由于缺少電壓表,因此解決本題的關鍵是如何測量出電阻Rx兩端的電壓.解決本題的方法是開放性的,只要能測出電阻Rx兩端的電壓(或Rx和R0兩端的總電壓),即可利用R=■求出電阻Rx的阻值(或電阻器Rx與R0的總電阻,從而可求Rx的阻值).另外,將導線并聯在電阻Rx或已知電阻R0兩端,可使得電路中電流發生變化.根據電流表的數值,并利用歐姆定律即可求出電阻Rx的阻值.
例4 在學校舉行的物理創新大賽上,小明和小紅所在的科技小組分別設計了一種測量托盤所受壓力的壓力測量儀,如圖12、圖13所示.兩裝置中所用的器材與規格完全相同,壓力表是由電壓表改裝而成,R1為定值電阻,阻值為10Ω,R2為滑動變阻器,規格為“10Ω 1A”.金屬指針OP可在金屬桿AB上滑動,且與它接觸良好,金屬指針和金屬桿電阻忽略不計.M為彈簧,在彈性限度內它縮短的長度與其所受的壓力大小成正比.當托盤所受壓力為零時,P恰好位于R2的最上端;當托盤所受壓力為50N時,P恰好位于R2的最下端,此時彈簧的形變仍在彈性限度內.
(1)圖12裝置中,當P位于R2的最下端時,電壓表的示數為3V,則電源電壓是多少?
(2)圖12裝置中,壓力25N的刻度位置標在電壓表表盤多少伏的刻度線上?
(3)在圖12、圖13兩種裝置中,兩個壓力表的刻度特點有何不同?試說明理由.
解析 (1)圖12裝置中,當P位于R2的最下端時,
電路中的電流I=■=■=0.3A.
電源電壓U=I(R1+R2)=0.3A×(10Ω
+10Ω)=6V.
(2)圖12裝置中,當托盤所受壓力為25N時,P恰好位于R2的中點,滑動變阻器接入電路的電阻R2為5Ω.電壓表測R2兩端電壓.
電路中的電流I=■=■=0.4A.
電壓表的示數為U2=IR2=0.4A×5Ω=2V.
壓力25N的刻度位置標在電壓表表盤2V的刻度線上.
(3)圖12裝置中壓力表的刻度是不均勻的,圖13裝置中壓力表的刻度是均勻的.
歐姆定律是一個實驗定律,因此在教學“歐姆定律”一節時,教師必須在學生對“電流與電壓、電阻”之間關系進行猜想假設的基礎上,引導學生設計實驗方案,精心組織學生進行實驗。在實驗前指導學生:(1)根據電路圖準確連接電路;(2)仔細檢查電路及電表、滑動變阻器等連接是否準確;(3)在確認無誤時,動手實驗,并認真觀察、精確記錄數據;(4)明確滑動變阻器在兩次實驗中的作用:使定值電阻兩端電壓成整數倍變化和保持電阻兩端電壓不變;(5)分析實驗中可能出現的數據差異原因,重復實驗,直至準確。對于在實驗中怕麻煩、湊數據的學生及時用科學家尊重事實、刻苦鉆研及時教育他們,端正他們態度,幫助他們用實驗得出準確結果。通過實驗,使學生得到了歐姆定律實驗所需要的數據,也培養了學生觀察實驗能力和實事求是、客觀、細致的科學態度,從而激發學生勤奮求真的熱情。
二、寓培養學生科學方法于分析實驗數據和歸納出實驗結論之中
在得出實驗數據之后,就著手組織學生分析數據、歸納出結論。在引導時,引導學生回憶“探究影響導體電阻大小的因素”的實驗方法,并要學生用之中方法研究電流跟電壓、電阻兩個因素的關系,即(1)固定電阻不變時,研究電流跟電壓的關系;(2)固定電壓不變時,研究電流跟電阻的關系。最后將兩次結論綜合起來,應用數學函數知識得出電流跟電壓、電阻的關系。接著,根據學生實驗數據組織討論,并分析歸納實驗結論。(1)分析“研究電流跟電壓關系”表格:電流隨電壓增大而增大,且電壓增大幾倍電流也增大幾倍。得出結論1:當電阻一定時,電流與電壓成正比。(2)分析“電流與電阻關系”表格:電流隨電阻的增大而減小,且電阻增大幾倍,電流就減小到原來的幾分之一。得出結論2:當電壓一定時,電流與電阻成反比。歸納結論1、2,即得歐姆定律。在整個研究、分析、抽象,歸納過程中,使學生潛移默化地學會了:(1)研究問題的方法――控制變量法;(2)對實驗數據的綜合――分析――抽象――歸納的處理方法,從而學到了由特殊、個別推到一般的邏輯推理方法。這些方法都是學生終生受益的科學研究方法。在得出實驗結論――歐姆定律后,教師接著就組織學生用他們已學過的數學知識推導歐姆定律的計算公式:(1)把電流與電壓成正比表達成I∝U;(2)把電流與電阻成反比表達成I∝1/R,把(1)、(2)結合起來得出計算公式:I=U/R;通過公式推導使學生了解到不同學科之間的聯系,它不僅開闊了學生的視野,也可使學生學到物理公式常用的科學的數學方法。
三、寓培養學生科學思想于理解、應用定律之中
對于實驗定律――歐姆定律,在理解其內容時,引導學生討論:能不能把定律敘述的導體的電流與導體兩端電壓成正比、與導體兩端電阻成反比改敘述成導體兩端電壓與導體電流成正比、導體電阻與導體電流成反比?讓學生在討論中明白:敘述定律時只能按課本那樣敘述,否則是錯誤的。這是因為事物內部矛盾的雙方有主有次,這里電壓、電阻是矛盾的主要方面,是事物變化的依據,對事物變化起決定作用的;而電流則是矛盾的次要方面,它是隨電壓、電阻變化而變化的,在事物變化中處于服從地位;這樣使敘述在討論中理解了定律,在理解定律過程中獲得了一次科學的認識教育。
在講解定律公式的應用時,如教師通過P111教材例1的講解,強調了定律的應用是有條件的,即(1)同體性:只能適用于同一段電路中的電流、電壓以及電阻之間的關系的運算;(2)同時性;(3)計算時數字代入單位必須是國際單位制中主單位。引導學生認識到真理是有局限性的,是離不開特定條件的。又如教師通過課本例2講解,強調了定律的應用性,即通過歐姆定律可以求出導體的電阻值,也就是可用伏安法測未知電阻,使學生體會到:理論的實踐性以及理論與實踐的一致性。此外取平均值可以減小實驗誤差;表格可以得到實驗結論1等。
四、寓培養學生的科學精神于介紹科學家的事例之中
結合課本中“信息庫”介紹,使學生了解德國的物理學家歐姆發現了電路中遵循的基本“交通規則”,但他幼年家貧,曾中途輟學,后全憑自己努力,完成學業。他為了得到歐姆定律,花費了十年心血。當時的實驗條件非常差,他自制了測電流的電流扭秤,花五年時間才找到電壓穩定的電源。經過長期細致的研究,終于取得了成果。在教學中把歐姆的對學習勤奮刻苦,對科學知識的執著追求,在科學研究道路上勇于探索、百折不撓的獻身精神及對人類社會的貢獻,展現在學生面前,使學生從中接受了熱愛科學、追求真理的科學接受教育。
教育者在實施科學素養教育時不是生硬的說教,應有機結合教材適時適量地滲透;科學素養教育是素質教育的核心,在實施時教師還應當有意識、有目的地進行,同時聯系教材中其他素質教育因素如能力、智力、科學美等全方位地開展,并做到主、次得當,這就需要安排好教學過程和節奏,從而使素質教育得到全面培養。
電流通過純電阻與非純電阻時的能量轉化關系,是高中物理直流電路部分的重點知識,但由于很多同學不能夠正確區分純電阻與非純電阻,導致很多問題的分析出現問題,本人結合教學過程中的實際情況,以電動機為例,較好的解決了純電阻與非純電阻中應用中的區別與聯系。
一、設計的幾個實驗分析:
當電流通過電動機的過程中,消耗電能,同時會產生其他形式的能,這個能量轉化的過程就是電流做功的過程,即電功W=IUt。而電流通過線圈時會產生焦耳熱,Q=I2Rt,那么,Q與W相等嗎?
解決方案:假設Q=W,將推導出I=U/R,即歐姆定律,而歐姆定律是有它的適用條件的。
分析:歐姆定律有它的適用條件,電流消耗的電能全部轉化為內能,此時電功等于電熱。所以,歐姆定律適用的電路叫做純電阻電路;歐姆定律不適用的電路叫做非純電阻電路。
實驗1:探究電動機在不轉動的狀態下,電壓、電流和電阻的關系有何特點。
實驗2:探究電動機在轉動的狀態下,電壓、電流和電阻的關系有何特點。
通過具體的實驗讓學生清晰的辨別純電阻電路與非純電阻電路。
實驗3:進一步探究電動機在不轉動的狀態下,電壓、電流和熱功率、總功率的關系。
實驗結論:電流通過純電阻時,熱功率在總功率中所占比值很高。在誤差允許的情況下,純電阻電路產生的電熱近似等于消耗的電功,即W=Q.
實驗4:進一步探究電動機在轉動的狀態下,電壓、電流和熱功率、總功率的關系。
實驗結論:電流通過非純電阻時,熱功率在總功率中所占比值較小。從能量守恒的角度去考慮,W=Q+E,即電動機消耗的電能等于產生的熱量及產生的機械能的總和。
二、大思路
含電動機的電路由于涉及電能轉化為機械能,電動機正常工作的電壓電流關系不再滿足,我們需要從能量守恒的角度去研究。
電動機正常工作時的輸入功率(即電動機消耗的總功率)一部分轉化為電熱,一部分轉化為機械能輸出。根據能量守恒:
P輸入+P熱=P輸出
1.求電動機兩端的電壓U
2.求流過電動機的電流I
3.求電動機的內阻r
4.求電動機輸入功率P輸入,用電功率公式P=IU計算
5.求電動機內阻消耗的電熱功率P熱,根據焦耳定律求出P熱=I2r
注意:4、5中的兩個公式不能使用純電阻電路中的其他變形。
6求出P輸入、P熱之后,不難求出P輸出
舉一反三,如果已知P輸入、P熱、P輸出中的任意兩個,則另一個可以通過解能量守恒方程求出。
三、例題分析:
例:一臺電風扇,內阻為20Ω,接上220V電壓后,消耗功率66W,問:
(1)電風扇正常工作時通過電動機的電流是多少?
(2)電風扇正常工作時轉化為機械能的功率是多少?轉化為內能的功率是多少?電動機的效率是多少?
(3)如果接上電源后,電風扇的風葉被卡住,不能轉動,這時通過電動機的電流,以及電動機消耗的電功率和發熱功率是多少?
分析(1)因為P入=IU
所以I=PUA=0.3A
(2)電風扇正常工作時轉化為內能的功率
P內=I2R=0.32×20W=1.8W
電風扇正常工作時轉化為機械能的功率
P機=P入-P內=66W-1.8W=64.2W
電風扇正常工作時的效率
η=64.266×100%=97.3%
(3)電風扇風葉被卡住后電動機不轉時可視為純電阻,通過電風扇的電流
I=UR=22020A=11A
電動機消耗的電功率
P=IU=11×220W=2420W
電動機發熱功率
中圖分類號:G633.7 文獻標識碼:A 文章編號:1003-6148(2016)12-0060-3
1 P于閉合電路歐姆定律
1.定律內容:在外電路為純電阻的閉合電路中,電流的大小跟電源的電動勢成正比,跟內、外電阻之和成反比。
2.定律的得出:仔細分析人教版和教科版教材,他們給出定律的過程是相同的。在電源外部,電流由電源正極流向負極,在外電路上有電勢降落,習慣上稱為路端電壓或外電壓U,在內電路上也有電勢降落,稱為內電壓U';在電源內部,由負極到正極電勢升高,升高的數值等于電源的電動勢。理論和實踐證明電源內部電勢升高的數值等于電路中電勢降低的數值,即電源電動勢E等于外電壓U和內電壓U'之和,即E=U+ U'=U+Ir。若外電路為純電阻,則U=IR,所以E=IR+Ir,I=
從教學實際看,上述給出定律的方法很多同學并不能理解,只能生硬的接受,這給學生對定律的理解和運用帶來困難。在教學中筆者嘗試從能量角度推導定律,效果較好,過程如下:從能量轉化觀點看,閉合電路中同時進行著兩種形式的能量轉化:一種是把其他形式的能轉化為電能,另一種是把電能轉化為其他形式的能。
設一個正電荷q,從正極出發,經外電路和內電路回轉一周,其能量的轉化情況如下:
在外電路中,設外電路的路端電壓為U,那么正電荷由正極經外電路移送到負極的過程中,電場力推動電荷所做的功W=qU,于是必有qU的電能轉化為其他形式的能量(如化學能、機械能等)。在內電路中,設內電壓為U',那么正電荷由負極移送到正極的過程中,電場力所做的功W=qU',于是必有qU'的電能轉化為內能。若電源電動勢為E,在電源內部依靠非靜電力把電量為q的正電荷從負極移送到正極的過程中,非靜電力做的功W=qE,于是有qE的其他形式的能(化學能、機械能等)轉化為電能。
因此,根據能量轉化和守恒定律,在閉合電路中,由于電場力移送電荷做功,使電能轉化為其他形式的能(qU+qU'),應等于在內電路上由于非靜電力移送電荷做功,使其他形式的能轉化成電能(qE),因而qE=qU+qU',即E=U+U'。若外電路為純電阻R,內電路的電阻為r,閉合電路中的電流強度為I,則U=IR,U'=Ir,代入上式即得I=
E/(R+r)。
3.定律的理解:不論外電路是否為純電阻,E=U+ U'=U+Ir總是成立的,只有當外電路為純電阻時,才能成立。閉合電路歐姆定律的適用條件跟部分電路歐姆定律一樣,都是只適用于金屬導電和電解液導電。
2 不同的物理量間的圖像關系以及對圖像的理解(以外電路為純電阻為例)
圖像1 電路中的總電流與外電阻的關系即I-R圖像
圖像2 外電壓與外電阻的關系即U-R圖像
由閉合電路歐姆定律可得:
分析可得:R增大,U增大;R減小,U減小,但不成線性關系。R0,U0; R∞,UE。故U-R圖像如圖2所示。當外電路短路(R=0),外電壓為0;當外電路開路R∞,外電壓等于電動勢E,即若題目中告訴某一電源的開路電壓,則間接告訴了電動勢E的值。
圖像3 外電壓與總電流的關系即U-I圖像
由閉合電路歐姆定律可得:U=E-U'=E-Ir。
分析可得:由于E、r為定值,故U與I成線性關系,斜率為負,故圖像應如圖3所示。當I=0,U=E,即圖像的縱截距表示電動勢;當 此時外電路短路,此電流即為短路電流,即橫截距表示短路電流。斜率k=-r,即斜率的絕對值表示內電阻。
由上述分析可知,若給出了U-I圖像,則由圖像就可以知道電源電動勢E和內阻r這兩個重要的參量。若將不同電源的U-I圖像畫在同一個圖中,如圖4所示,則可以比較不同電源的電動勢和內阻的大小。由圖4可知E1=E2、r1
圖像4 電源的輸出功率與外電阻的關系,即P-R圖像
圖像5 電路中的功率與總電流的關系,即P-I圖像
與閉合電路相關的功率有3個:電源的總功率、電源內部的熱功率、電源的輸出功率。
由P=IE可知P與I成正比,圖像應為過原點的一條傾斜的直線。
由P=I2r可知圖像應為頂點過原點的關于縱軸對稱的開口向上的拋物線的一半。
由P=P-P=IE-I2r可知圖像應為過原點的開口向下的拋物線的一部分。
若將3個功率與電流的關系圖像畫在同一圖像中,則分別對應著圖6中的圖線1、2、3。
利用圖線1可求電動勢E,利用圖線2可求內阻r,需要特別注意的是:此圖像中3條圖線不能隨意畫。“1”“2”交點說明此時P=P,即P=0,外電路短路,電流最大,此狀態下圖線“3”與橫軸交點值一定是“1”“2”交點對應的橫坐標值,否則就是錯誤的。“2”“3”交點的含義為P=P,此狀態下R=r,則“2”“3”交點對應的橫坐標一定為 ,若不是則錯誤。還必須注意的是“2”“3”的交點一定是“3”的最高點,因為R=r時,P最大,若不是這樣則此圖畫錯了。
案例 在圖7(a)所示電路中,R0是阻值為5 Ω的定值電阻,R1是一滑動變阻器,在其滑片從最右端滑至最左端的過程中,測得電源的路端電壓U隨電流I的變化圖線如圖7(b)所示,其中圖線上的A、B兩點是滑片在變阻器的兩個不同端點時分別得到的,討論以下問題:
問題1 滑片從最右端滑至最左端的過程中,電流表示數如何變化?
分析:滑片從最右端滑至最左端的過程中,由電路結構可知外電阻R變小,由I-R圖像可知電流表示數變大。
問題2 滑片從最右端滑至最左端的過程中,電壓表示數如何變化?
分析:滑片淖鈑葉嘶至最左端的過程中,由電路結構可知外電阻R變小,電壓表測量的是外電壓,由U-R圖像可知電壓表示數變小。
問題3 電源電動勢和內阻各為多大?
分析:圖7(b)給出的是外電壓與電流的關系,由圖可求得斜率絕對值為20,將圖線延長與縱軸相交,可得縱截距為20,由U-I圖像的物理含義可知電源電動勢E=20 V,內阻r=20 Ω。
問題4 滑片從最右端滑至最左端的過程中,電源的輸出功率如何變化?最大輸出功率為多少?
分析:由題目所給條件可求得R1的最大阻值為75 Ω,滑片從最右端滑至最左端的過程中,外電阻的變化范圍為80 Ω~5 Ω,由P-R圖像可知P先變大再變小。調節過程中可以滿足R=r,則當R1的有效阻值為15 Ω時,電源輸出功率達最大 ,即為5 W。
問題5 若在上述條件下,僅將R0的阻值改為30 Ω,滑片從最右端滑至最左端的過程中,電源的輸出功率如何變化?電源的最大輸出功率為多少?
分析:滑片從最右端滑至最左端的過程中,外電阻的變化范圍為105 Ω~30 Ω,由P-R圖像可知P一直變小。由于無法滿足R=r,則電源輸出功率不可能為,則當R與r最最接近即R1=0 Ω時電源輸出功率最大,計算可得為4.8 W。
與閉合電路歐姆定律應用相關的題目較多,題型多種多樣,解決這類題目的關鍵是要搞清電路結構,搞清電表的測量對象,分清已知量與未知量,再運用相應規律求解則可。當然,這也不是一蹴而就的,只有多做、多練、多思考才能達到較好的效果。在解答閉合電路問題時,部分電路歐姆定律和全電路歐姆定律經常交替使用,這就要求我們認清研究對象是全電路還是某一段電路,是這一段電路還是另一段電路,以便選用對應的歐姆定律,并且要注意每一組物理量(I、U或I、E、R、r)的對應關系是對同一研究對象的,不可“張冠李戴”。
在直流電路中,通過電阻的電流產生的能量轉化是能量計算的重點知識,但由于不能夠正確區分純電阻與非純電阻,導致求解中出現問題,特別含有電動機的相關計算。下面以電動機為例,來解決純電阻與非純電阻應用中的區別與聯系。
一、過程再現及分析
含有電動機電路,有電流通過電動機時,線圈消耗電能,產生其他形式能量(內能、機械能等),該能量轉化過程為電流做功的過程,即消耗電功W=UIt,電流通過線圈產生的焦耳熱Q=I2Rt,那么,兩者之間有何關系呢?
解決方案:假如Q=W,則UIt=I2Rt,推導出I=,即歐姆定律,而歐姆定律是需在純電阻情況下才成立的。
分析:根據歐姆定律的適用條件,電流通過電阻產生的電能全部轉化為內能,即電功等于電熱,此時由歐姆定律適用的電路叫做純電阻電路;歐姆定律不適用的電路叫做非純電阻電路。
問題設計1:電機在受阻不轉動的情況下,電壓、電流和電阻的存在的何種關系,消耗的電能和產生的電熱有何關系?
問題設計2:電動機在轉動的狀態下,電壓、電流和電阻的關系有何特點,消耗的電能和產生的電熱有何關系?
問題設計意圖:明確辨別純電阻電路與非純電阻電路。
問題設計3:進一步探究電機在受阻不轉動的情況下,電壓、電流和熱功率、總功率的有何關系?
探究結果:在純電阻電路中,熱功率在總功率中所占比重大,純電阻電路產生的電熱近似等于消耗的電功,即W=Q。
問題設計4:探究電動機在正常轉動的情況下,電壓、電流和熱功率、總功率之間有何關系?
探究結果:在非純電阻電路中,熱功率在總功率中所占比重小。根據能量守恒,W=E+Q,即電動機消耗的電能等于產生的機械能及產生的熱量的總和。
二、例題分析
工地經常用電動機提升重物,其裝置如圖所示,電動機兩端電壓為5V,電路中的電流為1A,物體A重20N,電動機線圈的電阻為r=1Ω。求:
(1)電動機正常工作時,線圈電阻消耗的熱功率為多少?
(2)電動機正常工作時,電動機輸入功率和輸出功率各是多少?
(3)如果接上電源后,線圈被卡住,不能轉動,這時通過電動機的電流,以及電動機消耗的電功率和發熱功率是多少?
解析:電動機正常工作時,其電路為非純電阻電路,其中消耗的電功率一部分轉化為線圈的熱功率,另一部分轉化為電動機的機械功率。
(1)電動機線圈上消耗的熱功率為
P熱=I2r=12×1W。
(2)電動機的輸入功率為消耗的電功率
P入=UI=5×1W=5W
電動機的輸出功率
P出=P入-P熱=5W-1W=4W。
(3)線圈被卡住后電動機不轉時可視為純電阻,通過電動機的電流
I==5A
電動機消耗的電功率
P=UI=5×5W=25W
電動機發熱功率
P內=I2R=52×1W=25W
小結:由例題中不難看出U、R、P三個物理量的數值并不滿足歐姆定律,而根據對電路能量轉化分析,解決有關純電阻電路和非純電阻電路的問題,就比較清楚了。
從上面的實驗探究與例題可見,含有電動機工作過程中的能量的計算,關鍵是要正確區分是純電阻還是非純電阻電路,其能量關系是:電流通過非純電阻時,E總=Q熱+E其他;電流通過純電阻時,E總=Q熱。
結合以往教學實踐經驗整理論述,發現有關初中階段物理課程內的電功率教學難點,始終限定在電路結構分析和計算公式靈活選取層面。事實上,大多數初中生對于歐姆定律可以說是耳濡目染,相關性計算操作訓練也基本上能夠駕輕就熟。因此,后續的挑戰任務內容,便是針對電功率計算過程中的公式科學化選取規則,加以細致化驗證論證,并快速將內部訣竅傾數灌輸到學生思維體系架構之中。相信長此以往,對于初中生群體物理知識結構細致化修繕和今后升學壓力輕松克制,能夠發揮前所未有的鞏固效果。
一、初中階段物理電功率知識教學難點特征的客觀論述
首先,知識結構機理綜合性顯著。需要學生靈活運用以往熟練掌握的歐姆定律、串并聯規則,以及力學知識內容,進行相關性數據定量化計算驗證。
其次,與生活實際狀況聯系過于縝密。在初中階段研習電功率知識,必然會接連引入各類電功率概念機理、實際測量等探究性任務,確保學生在特定情境感染下,自主強化自身動手操作潛質,并在今后善于發現并解決生活中一切和物理電功率知識相關的問題。在如今發達的社會生活領域中,我們經常會接觸各類電器,雖然說大部分初中生尚未掌握內部核心工作原理,但是透過相關題型的計算過后,就可以大致了解透徹。由此看來,不管是透過課程規范要求角度,或是物理知識生活化應用角度界定,電功率知識點始終發揮著高效的傳輸引導功效。
二、新時代背景下我國初中物理電功率知識點合理教學策略內容的細致化解析
1.課堂教學理念的全面改良設計
其強調的是,初中物理教師在正式引入電功率知識環節中,需要在課堂內部主動創設一類生活化感知情境,借此吸納學生關注意識,令其愿意參考各類知識內容,并進行實驗方案綜合性猜想設計,方便教師進行審核和改正。在整個教學流程中,教師始終被認定是學生的引導、合作角色,一旦初中生思維出現任何瓶頸限制危機,教師必須在第一時間范圍內洞察并賦予精確化點撥。也就是說,教師的核心動機,在于鼓勵學生自主性探索電功率知識運算規律,同時聯系熟悉的生活情景進行實驗操作,令其建立應有的物理科學探索精神。
2.建立起明確的電功率知識教學引導指標
首先,作為專業化初中物理教師,在進行電功率知識傳授期間,需要同時關注個體情感價值觀熏陶實效,提倡現場學習交流模式的多樣化表現特征,真正令學生透過生活掌握各類物理知識,同時做好今后應對社會各項職業挑戰的準備工作。
其次,督促初中生盡快地熟練掌握電功率相關計算公式的應用規則。事實上,任何公式都存在專屬的適用規則,只要確保初中生能夠將這方面細節了解透徹,就能盡量規避日后解題過程中公式錯用問題。有關這部分公式類型具體表現為:
(1)原始公式。電功率的定義式P=W/t,適合于任何電路;經驗式P=UI和W=UIt,適合于任何電路;焦耳定律Q=I2Rt,適合于任何電路;經驗式W=UIt,適合于任何電路。
(2)推導公式。結合歐姆定律I=U/R及其變形公式U=IR和R=U/I來推導。因此,適用條件應該和歐姆定律相同――只適用于純電阻電路。如,推導公式P=I2R和W=I2Rt,只適合于純電阻電路;推導公式P=U2/R,W=U2t/R,只適合于純電阻電路。
(3)關系式。根據電路和不同材料的特點,得到的關系式W=Q,只適合于純電阻電路。其中W是電流流過導體所做的功,Q是電流流過導體產生的熱;另外P=P1+P2+…+Pn,適合于任何電路。
(4)比例式。主要是透過串并聯電路的特點和公式的合并特征,形成的一種與串并聯相關的推導式。如并聯電路中電功率與電流、電阻的關系:P1∶P2=I∶I=R∶R,證明在并聯電路中,電功率之比等于它們所對應的電流之比、等于它們所對應電阻的反比。
為了把課程改革引向深入,探索更為科學有效的教學方法,筆者所在的長陽縣,廣大物理教師在實施市教科院教學模式的過程中,在縣研訓中心劉開雙老師的帶領下,結合我縣的實際,經過創新發展,總結探索出“三環六步導學”教學模式.并堅持在課堂教學中推行教學模式.經教學實踐證明,該模式簡潔易行,能有效促進學生學會學習,有利于提高教學效率.
2教學模式的解讀
“三環六步導學”教學模式的基本構想是,一節課由不同類型和形式的學習活動單元及過程組成,讓學生在目標和學習方法的引導下,自主合作學習,探究、體驗、領悟學習內容,展示、交流學習結果,教師通過講授、指導、評價等方式引導學生學習.
2.1“三環六步”教學模式的框架
[TP1CW36.TIF,BP#]
該模式體現創設情境、目標(或問題)引導、任務驅動、學生自學、活動探究、交流討論、自主評價、師生互動、應用反饋等多種學習方式綜合運用的一種教學模式(圖1).
2.2“三環”的涵義
“三環”是指 “目標導引、活動探究、評價應用 ” 三個環節.教學過程運用三個環節交替遞進,有效解決教學過程中目標不明、方法不清、評價滯后的問題.這三個環節的構想在筆者所在區域得以廣泛實踐.
2.2.1目標導引
我們到超市購物,如果沒有明確的目標,就會漫無目的地閑逛,如果有目標,購物效率會大大提高.學習活動也是如此,若是學生對學習目標是模糊的,學習效果就會打折扣.所以學習目標不單是教學設計的一個要素,不僅是教師要明白,也應該讓學生明白,讓學習活動有的放矢.一個好的學習目標的要[LL]素應該是:學習內容+學習方法+預期達到的學習水平和要求.這樣的學習目標不僅讓學生明確了學什么,而且讓學生明確怎么學,知道可以通過哪種學習方式達到目標,就能引導學生自主開展學習活動,也能引導學生自主開展評價活動.
2.2.2活動探究
活動探究是在學習目標的導引下進行的一系列學習活動和方法的總稱.通過問題引導、學法指導,一步i引導學生按具體的學習方式進行自主學習,進而達成學習目標,提高學習效率,同時培養學生的學習能力,促進學生學會學習.對于每一個學習活動,教學內容、方式是具體的,需要到達的水平和要求是明確的,這樣學生就可以在目標和學習方法的引導下,自主合作學習,探究、體驗、領悟學習內容.
2.2.3評價應用
在教學過程中,每個學習活動結束時,都安排相應的學生自主評價,及時檢查評價學習效果.在一節新課結束后,也要安排課堂小結、當堂演練、拓展延伸,對學生進行形成性評價,檢驗學生對所學知識應用情況.通過及時評價、形成性評價使自主評價緊隨教學活動的展開而展開,貫穿于教學活動的始終,通過評價促進學生的發展.
2.3“六步”的涵義
“六步”是指對于某一課時或某個學習活動采取的六個基本步驟,即“情景問題探究評價應用反饋”.“六i”是基于“以學定教”提出的一種范式,對于某個教學內容,并非要面面俱到,可以是全部,也可以側重其中的部分步驟.
2.3.1情境
新課程強調學習情境的創設.情境創設的途徑很多,如利用實驗創設,聯系社會生活現象和素材創設,利用新舊知識的聯系創設,通過實踐體驗創設,利用現代信息技術創設等.情境創設的作用是巨大的,能引發認知沖突,激發興趣,喚起主動學習的欲望,矯正前概念的偏差,做好思維鋪墊,活躍課堂氛圍.情境可以在引入課題時創設,也可以在每個學習活動單元過程中進行創設.
2.3.2問題
探究始于問題,沒有問題就沒有探究.針對學習目標而設計的一個個學習活動單元,是圍繞問題展開的,為解決這些問題,根據問題的特征而預設了多樣化的學習方法,讓學生在解決問題的過程中學習.對有的問題,可采取自主學習解決;有的問題,可采取小組合作學習解決;有的問題,可采用實驗法;還有的問題,需要進一步猜想與假設,設計實驗,進行實驗探究;
對教學過程中生成的問題,還要突破預設的束縛,靈活加以處理.總之,問題的設計是關鍵,問題設計得合理,解決問題的方法科學,就會有效驅動學生的整個學習過程,取得良好的學習效果.
2.3.3探究
新課程提倡探究式教學.廣義地講,學生或通過自己的活動,或在老師的引導下,通過各種方式的主動學習,從未知到已知的過程,都是探究過程.所以,如上所述,針對具體問題而采取的自學指導、合作探究、理論推理、實驗探究,以及精講點撥、師生對話、演示操作、小組討論、體驗、展示等學習活動,都是為了讓學生建構形成自己理解的知識和方法而采取的探究活動,這是教學過程的重頭戲.
2.3.4評價
新課倡導“立足過程,促進發展”的學生學習評價,促進學生全面富有個性的發展,促進教師反思和改進教學.這里的評價可以是對學生學習過程的及時評價,對自學效果的檢查,也可以是對整堂課的學習情況的檢測,還包括老師對學生的課堂表現進行的口頭點評、學生互評和學生對課堂收獲的自我總結.通過評價幫助學生認識自我,發展自我.同時,通過學生之間開展自主評價活動,從而使學生學會評價.
2.3.5應用
在學習過程中,應用指在一定情境下展示和表達學生所理解的知識,這個步驟貫穿于課堂提問、課堂練習、課外實踐和測驗考試之中,所以在上述“三環”的基礎上,還應注重當堂演練、拓展延伸等環節,既加強對知識的理解,也可初步檢驗學習目標的達成情況.
2.3.6反饋
反饋指教師利用課堂觀察、自主評價、當堂演練、拓展訓練和形成評價等環節,與學習目標中的水平和要求對照,提供反饋信息,發現學生理解概念和規律 上的差異,采取措施,修正教學素材或過程,修正偏差,進而進行釋疑解難、變式訓練,使盡可能多的學生達成學習目標.
綜上所述,“三環六步學導”教學模式以學習活動為中心,通過學生的自主、探究、合作學習,實現“以學定教、以教導學”的目的,不僅學會知識、技能和方法,而且學會學習,充分體現了“雙主”――教師的主導性和學生的主體性,使主導性和主體性和諧統一,發揮最大效益.能將課堂真正還給學生,使學生學會學習,學會評價,從而提高學生的學習能力和評價能力.
3“三環六步導學”教學模式課例
本文以人教版第十七章第二節《歐姆定律》為例,依據“三環六步導學”教學模式,具體地介紹.
3.1目標導引
(1)通過看書、討論,理解歐姆定律的內容、公式、單位及適用的條件.
(2)通過閱讀例題、老師講授、同步練習,學會運用歐姆定律進行簡單的計算及一般方法.
3.2活動探究
情景上節課,學生已經學習了電流跟電壓和電阻的關系,請同學們回顧一下并表述出來.
活動1:閱讀課本78頁,然后回答下面的問題.
活動2:討論電流、電壓、電阻之間的因果關系.
活動3:閱讀課本78、79頁的例題1和例題2,思考用公式進行計算的一般步驟和規范要求.
[BP(]活動4:例題講析
例3在如圖所示的電路中,調節滑動變阻器 R′,使燈泡正常發光,用電流表測得通過它的電流值是0.6 A.已知該燈泡正常發光時的電阻是20 Ω,求燈泡兩端的電壓.[BP)]
活動4:例題講析,點撥電阻與電壓、電流無關,歐姆定律的[HJ1.45mm]另一個適用條件是同一時刻(同一狀態).
例1加在某一電阻器兩端的電壓為5 V時,通過它的電流是0.5 A,則該電阻器的電阻應是多大?如果兩端的電壓增加[JP3]到20 V,此時這個電阻器的電阻值是多大?通過它的電流是多大?
3.3評價應用
3.3.1自主評價
評價1:請你口頭表達歐姆定律的內容.
評價2:請你說出歐姆定律的數學表達式.
評價3:公式中各物理量的單位是什么?(提示區分物理量的符號和單位符號)
評價4:歐姆定律的適用條件是什么?
評價5:下列關于歐姆定律說法中正確的是
A.導體中的電流與導體兩端的電壓成正比
B.導體中的電流與導體的電阻成反比
C.電壓一定時,導體的電阻與導體中的電流成反比
D.電阻是導體本身的一種性質,與電流、電壓無關
評價6:歸納用歐姆定律公式進行計算的一般步驟.
3.3.2當堂演練
(1)關于電流跟電壓和電阻的關系,下列說法正確的是
A.導體的電阻越大,通過導體的電流越小
B.導體的電阻越大,通過導體的電流越大
C.導體兩端的電壓越大,導體的電阻越大,通過導體的電流也越大
D.在導體兩端的電壓一定的情況下,導體的電阻越小,通過導體的電流越大
(2)一條鎳鉻合金線的兩端加上4 V電壓時,通過的電流是0.2 A,則它的電阻是[CD#3]Ω.若合金線的兩端電壓增至16 V時,它的電阻是[CD#3]Ω,這時若要用電流表測量它的電流,應選用量程為[CD#3]A的電流表.
(3)關于歐姆定律,下列敘述中不正確的是
A.在相同電壓下,導體的電流和電阻成反比
B.對同一個導體,導體中的電流和電壓成正比
C.因為電阻是導體本身的性質,所以電流只與導體兩端的電壓成正比
D.導體中的電流與導體兩端的電壓有關,也與導體的電阻有關
[TP1CW37.TIF,Y#]
(4)在探究電阻兩端的電壓跟通過電阻的電流的關系時,小東選用了甲、乙兩個定值電阻R甲、R乙分別做實驗,他根據實驗數據畫出了如圖2所示的圖像,請根據圖像比較電阻R甲與R乙的大小,R甲[CD#3]R乙.(選填“大于”、“等于”或“小于”)
3.3.3拓展延伸