關鍵詞:entire solution traveling wave nonlocal
摘要:This paper mainly focuses on the entire solutions of a nonlocal dispersal equation with asymmetric kernel and bistable nonlinearity. Compared with symmetric case, the asymmetry of the dispersal kernel function makes more diverse types of entire solutions since it can affect the sign of the wave speeds and the symmetry of the corresponding nonincreasing and nondecreasing traveling waves.We divide the bistable case into two monostable cases by restricting the range of the variable, and obtain some merging-front entire solutions which behave as the coupling of monostable and bistable waves. Before this, we characterize the classification of the wave speeds so that the entire solutions can be constructed more clearly. Especially, we investigate the influence of the asymmetry of the kernel on the minimal and maximal wave speeds.
數學學報雜志要求:
{1}作者姓名的漢語拼音應姓前名后,姓氏全部字母為大寫,名字的首字母大寫,雙名中間不加連字符不間隔;漢語拼音的作者姓名寫在英文表示的工作單位之前;多位作者的署名之間以逗號隔開;不同單位的作者姓名右上角加注序號。
{2}編輯部有權酌情刪改來稿,如不同意請予說明。
{3}計量單位一律采用中國國家法定計量單位,有國際符號的計量單位均用符號表示;數值和國際計量單位間應有空格,若之間有漢字則無須空格;復合單位不使用除法格式,而使用乘積格式。
{4}注釋以“①”“②”“③”等標注,并以腳注形式按序排列。
{5}基金資助信息:列出基金項目名稱與編號。
注:因版權方要求,不能公開全文,如需全文,請咨詢雜志社